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Efficient Pedestrian Detection via Rectangular
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Abstract—Automatic pedestrian detection for advanced driver
assistance systems (ADASs) is still a challenging task. Major
reasons are dynamic and complex backgrounds in street scenes
and variations in clothing or postures of pedestrians. We propose
a simple yet effective detector for robust pedestrian detection.
Observing that pedestrians usually appear upright in video data,
we employ a statistical model of the upright human body in
which the head, upper body, and lower body are treated as three
distinct components. Our main contribution is to systematically
design a pool of rectangular features that are tailored to this shape
model. As we incorporate different kinds of low-level measure-
ments, the resulting multimodal and multichannel Haar-like fea-
tures represent characteristic differences between parts of the
human body but are robust against variations in clothing or
environmental settings. Our approach avoids exhaustive searches
over all possible configurations of rectangular features nor does it
rely on random sampling. It thus marks a middle ground among
recently published techniques and yields efficient low-dimensional
yet highly discriminative features. Experimental results on the
well-established INRIA, Caltech, and KITTI pedestrian data sets
show that our detector reaches state-of-the-art performance at
low computational costs and that our features are robust against
occlusions.

Index Terms—Advanced driver assistance systems (ADASs),
channels, Haar-like features, pedestrian detection.

I. INTRODUCTION

ISION-BASED pedestrian detection attracts increasing

attention in the academic community since it is a topic
of considerable practical interest, for instance in video surveil-
lance and on-board driving assistance [1]. For surveillance set-
tings in which the camera is fixed and the background is static,
significant progress has been made [2]. However, pedestrian de-
tection for advanced driver assistance systems (ADASS) is still
a challenging problem, primarily because of camera motion,
dynamic backgrounds, and changing illumination conditions in
complex outdoor environments and, particularly, variances in
clothing, appearance, viewpoint, and posture of pedestrians.
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Over the last decade, vision-based pedestrian detection has
been extensively investigated [3], [4]. Efforts were made to-
ward the design of new features [5]-[8]. Other work focused
on improving classification methods [9]-[11] or emphasized
occlusion handling with part-based models [12], [13]. Yet, from
looking at the recent literature works, it appears that there is
a significant general trend in work on pedestrian detection.
Huge feature pools and high-dimensional feature vectors are
becoming increasingly popular, mainly because they yield rea-
sonable performance through simple integration with classical
classifiers, such as support vector machines (SVMs), and do
not employ complicated models for the handling of variances
in viewpoints, body parts, occlusions, or context.

Unfortunately, “There’s no such thing as a free lunch.”
Approaches employing very high-dimensional features come
at a price and pose a computational bottleneck in practice. In
particular, they rely on the availability of powerful computers
and GPU computation, particularly at training time. Addressing
this problem, we aim at more compact features that require less
memory and fewer computational costs yet guarantee reason-
able and robust performance.

In this paper, we propose compact features that incorporate
prior knowledge as to the appearance of the upright human
body. Our approach is inspired by prior work on detecting
objects of relatively low intraclass variability. In particular,
histograms of oriented gradients (HOGs) [5] and cascaded
Haar-like features [14] have become the de facto methods of
choice in this area. However, we note that previous features
are selected either by means of exhaustive searches over all
possible variations [14] or by means of less exhaustive random
sampling [15]. As an alternative, we propose a method that
marks a middle ground; we design compact discriminative
Haar-like features selected from a particular template pool,
which reflects the statistics of the appearance of the pedestrian
upright body shape.

Our previous findings about compact Haar-like features were
published in [16]; in this paper, we provide more implemen-
tation details and additional experimental results, as well as
deeper insights into these features. The procedure of our new
pedestrian detector is shown in Fig. 1, in which we provide
three major contributions.

Statistical Pedestrian Shape Model: From statistical gra-
dient data, we find that upright walking pedestrians share a
common visual appearance, particularly with respect to (w.r.t.)
the geometry of the head and shoulder region of the body.
We model pedestrian shapes in terms of three rectangles
geared toward different body parts, i.e., head, upper body, and
lower body.
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Multimodal Haar-like Template Pool: Based on the pedes-
trian shape model, we design a pool of templates that are better
tailored to pedestrian shapes and therefore lead to a very good
performance; on the other hand, they constitute only a small
subset of the set of all possible rectangular templates; thus,
they significantly reduce training times. We use two template
modalities, i.e., binary and ternary, for Haar-like templates.
The ternary modality is specifically proposed to represent
corner regions found along the pedestrian silhouette to en-
able rectangle features to represent more complex geometric
configurations.

Multichannel Haar-like Features: In order to incorporate
rich information from image data, we consider rectangle de-
scriptors not only w.r.t. colors but also w.r.t. gradients, yielding
a multichannel Haar-like feature pool. This addresses chal-
lenges due to variations in the choice of clothes.

This paper contains an overview of related work in Section II,
a description of our multimodal and multichannel features in
Section III, and our feature selection scheme in Section IV.
A thorough set of experiments is presented in Section V, in
which the impact of different parameters is investigated and
comparisons with state-of-the-art detectors from the literature
are made. Afterward, we discuss several important issues re-
garding the feature design in Section VI. Finally, we summarize
our contributions and findings and discuss several directions for
future work in Section VII.

II. RELATED WORK

Due to its practical impact, research on pedestrian detection
has noticeably intensified over the past decade and the literature
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Overview of our pedestrian detector. The dotted blue bounding box indicates the offline procedure.

on possible solutions is vast. Since an exhaustive survey is
beyond the scope of this paper, our following review therefore
focuses on features that have been proposed in this context.

To start, the arguably most popular features for visual pedes-
trian detection are HOGs, as introduced in [5]. HOG features
brought about significant improvements and therefore establish
an important baseline. In order to improve performance, several
researchers extended the feature pool by combining HOGs
with other features. Wang and Han [HogLbp] [17] combined
HOG features with a particular local binary pattern (LBP)
feature in order to cope with partial occlusions; Liu et al.
[18] introduced the idea of a granularity space, i.e., a family
of descriptors ranging from edgelets to HOGs; Walk et al.
[8] combined HOG features with self-similarity features re-
lated to color channels [MultiFtr+CSS] and motion features
[MultiFtr+Motion] in order to better integrate spatial and tem-
poral information. Other researchers aim at building stronger
HOG detectors through integration with part-based models.
Prioletti et al. [19] successfully applied the HOG detector for
different body parts in verification stage, resulting in significant
improvements.

Deviating from the popular framework of “HOG+SVM”
computations, Dollar et al. [20] proposed another strong base-
line [ChnFtrs], which applied integral channel features. At that
time, [ChnFtrs] outperformed previous detectors significantly
in terms of both detection accuracy and efficiency. An imme-
diate extension of this approach has been called the “Fastest
Pedestrian Detection in the West” [FPDW] [21] and was shown
to enable real-time multiscale detection. Later, many new vari-
ants [22], [23] emerged, and several authors obtained even
better performance by extending the feature pool in various
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ways. Benenson et al. [Roerei] [24] used irregular rectangles
resulting in a 718 080-dimensional feature pool; Lim et al.
[SketchTokens] [25] added self-similarity features, yielding a
21350-dimensional feature vector for image patches of a size
of 35 pixels x 35 pixels. Due to the extreme sizes of these
feature pools, both corresponding detectors require powerful
computing hardware and large amounts of memory at training
time. Addressing issues like these, our work aims at building
new detectors based on small but intelligently designed feature
pools that enable state-of-the-art detection accuracy.

Haar-like features became well known after Papageorgiou
and Poggio [26] proposed a Haar wavelets-based system for
object detection. The epitome of such approaches is found in
the work by Viola and Jones [14] who used Haar-like features
in combination with boosting algorithms to build a success-
ful face detector. In fact, an early attempt of Haar wavelets
for pedestrian detection can be found in [27] where it was
demonstrated that wavelet templates can be used to define the
shape of an object. Alonso et al. [28] evaluated Haar wavelets
and other features, e.g., gradients and co-occurrence matrix
to look for the most appropriate features for each body part.
Unfortunately, Haar-like features, considered as second-order
channel features, are not as successful as HOGs and are often
discarded in pedestrian detection as they seem not to improve
performance when combined with first-order channel features.
In a closer analysis as to possible reasons for this behavior,
we found that Haar-like templates that perform well for face
detection are not necessarily suited for pedestrian detection but
may fail to capture visual characteristics of human body. As a
remedy, we propose designing particularly tailored templates
for upright body shapes.

III. MULTIMODAL MULTICHANNEL HAAR-LIKE FEATURES

In this section, we describe our feature extraction procedure
for visual pedestrian detection. First, channels information in
terms of colors and gradients is computed from the input color
images. In addition, a statistical pedestrian shape model is de-
fined according to an average edge map. From this information,
a template pool is generated based on the predefined pedestrian
shape model. Finally, multimodal and multichannel Haar-like
features are extracted by convolution between templates and
each channel map.

A. Statistical Pedestrian Shape Model

Based on common sense and everyday knowledge, we as-
sume that pedestrian bodies share common geometry structures
and seek to corroborate this expectation based on empirical
data. We choose the INRIA data set, which contains anno-
tated image patches showing pedestrians scaled to a height of
96 pixels, and with 12 pixels padded in four directions to
include contextual information. Consequently, we perform a
statistical analysis on pedestrian images of size 60 pixels x
120 pixels. We compute an average edge map based on gradient
magnitude extracted from each sample image, regardless of
viewpoints or postures. The resulting average edge map is
shown in Fig. 2 and clearly resembles a human body.

Fig. 2. Procedure of our statistical pedestrian shape model (rightmost) gen-
eration. We collect all the pedestrian sample images from the INRIA data set
and compute an average edge map, as shown in the middle, which is divided by
rectangular cells. In this example, cell size is chosen to be 6 pixels X 6 pixels.
Three bounding boxes approximately indicate the head, the upper body, and the
lower body parts.

Features derived from rectangular image regions typically
allow for computational efficiency. We therefore decide to base
our pedestrian detector on rectangular features and hence divide
the edge map into square cells whose sizes may vary. Fig. 2
shows an example of cells of size 6 pixels x 6 pixels. Given
these grids of cells, the whole body is approximately divided
into three parts: the head, the upper body, and the lower body.
This is intended to increase robustness as these three parts
generally appear in different colors or textures in real-world
images.

This model is a statistical model because it is built on an
average gradient magnitude map, which we computed from sta-
tistical data. The boundaries of each part are defined manually
according to prior knowledge on human body parts, as well as
the silhouette from the average gradient magnitude map. We
vary those boundaries by choosing different cell sizes. In order
to obtain the optimal model, we implement experiments with
different cell sizes in Section V.

B. Multimodal Haar-Like Template Pool

In this section, we describe how a multimodal Haar-like
template pool is generated based on the statistical pedestrian
shape model discussed above.

We begin by explaining why we consider multimodal Haar-
like templates rather than more involved features based on local
histograms. In our following discussion, traditional Haar-like
features are referred to as a binary modality because they only
carry two possible weights (i.e., +1 and —1) for different rect-
angles. This binary modality is ill suited to represent cusps or
cornerlike structures of the human silhouette. This is to say that
it hardly adapts to the description of the content of bounding
boxes that contain three different logical components such as
the head, the upper body, and parts of the scene background.
Yet, for efficient subsequent classification, we are interested in
computing the difference between such parts w.r.t. two of them
at a time. We therefore propose to consider ternary templates.
An example is given in Fig. 3, in which ternary 2 x 2 templates
capture the local geometry of the image region where head,
shoulders, and background meet in joint corners.
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Fig. 3. Overview of our template pool generation procedure. Note that the
number array above each template indicates the z, y coordinates of its left-top
cell w.r.t. the shape model; those templates at [4, 4] and [2, 11] are ternary
(shown as white, black, and red areas), which are given the weights of +1, —1,
and 0, respectively. An example of redundancy removal is given. Two identical
templates are found in the pool, then one of them is discarded.

An overview of our template pool generation procedure is
shown in Fig. 3.
First, a size pool S is defined as

S:{(w,h)|w§wm, hghm,w,hGI\ﬁ} (1)

where w and h indicate the width and height (in terms of
covered cells) of a rectangular template; w,,, and h,,, are used to
constrain the overall size of templates since we focus on local
image information. Note that we constrain our templates to be
of rectangular form as these allow for convenient implementa-
tion and efficient computation. Statistical variations are coped
with by considering different modalities.

Second, we assign a label to each cell based on the pedes-
trian shape model. As shown in Fig. 2, images of pedestrians
available in the INRIA data consist of four logical components:
background, head, upper body, and lower body. We assign
each cell ¢(i, j) exactly one label L(i, ) that indicates which
component is found in the cell.

Next, for each pair of sizes in S, we slide a corresponding
rectangular window over the whole shape model to gener-
ate different templates at different positions and of different
weights. At a certain position (x, y), the template to be created
depends on how many different parts are contained in the
rectangle. A binary template is generated if there are only
two parts; ternary templates of different kinds are generated
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if there are three parts. Algorithm 1 provides details as to this
procedure. At each position, we first decide the modality. If it
is binary, then only one (f) template is generated; otherwise,
three (3) templates are generated.

In the following, a template is denoted as #(x, y, (w, h), W)
or in a slightly simplified way as t(z,y,s, W), s € S, where z
and y indicate the location of a template w.r.t. the human shape
model, w and h indicate the width and height of template w.r.t.
cells, and W is a weight matrix that is determined according to
the matrix L of labels for all cells.

Sometimes, templates like these may be redundant, as shown
in the example in Fig. 3. At position [4, 4], the 2 x 1 template
is identical to the third 2 x 1 template. The lower two cells of
the 2 x 2 template are both assigned weight of 0. That is, only
the upper two cells actually contribute to the feature response;
thus, we can easily simplify it to a2 x 1 template. Once another
identical template is found in the template pool, the current
template is discarded.

We develop a simple method to efficiently check for re-
dundancy. Given two templates t1(z,y, (w1, hi), Wy) and
ta(x,y, (we, he), W) at the same location (z,y), we define a
maximal size Spax(w, h) as

{ w = max(wq, ws) @
h = max(hl, hg)

Then, we expand two weight matrices to Syax(w, k) by filling
blanks with weights of 0. Next, we compute the difference
between two new weight matrices W7 and W)

Wy =W, —Wj. 3)

Templates ¢ and ¢, are considered to be identical if and only if
all the elements of W, are zero.

To cope with individual differences, each template is shifted
along four directions with a step of one cell, resulting in a larger
template pool. Therefore, for each template ¢(x,y, s, W), the
original template and a group of shifted templates are added to
the template pool. We denote this template group as

t(x,y,s, W)
tr(z—1,y,8, W)
tr(z+1,y,s, W)
tu(z,y—1,8,W)
tp(x,y+ 1,5, W).

“

Notably, some templates at the border of a training image patch
cannot be extended by means of shifting.

Finally, the full template pool after redundancy removal and
shifting is given as a set of templates of various sizes, with two
modalities and at different positions

T:{(m,y,s,W)|x,y€N, SES,W€R2} 5)
where = and y indicate the location of a template w.r.t. the hu-

man shape model, and W is a weight matrix that is determined
according to the matrix L of labels for all cells.
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Algorithm 1 Generating templates for pedestrian shape
model through sliding rectangles

1: initialize template pool: T < 0;

2: for i = 1tonSize do

3:  forz; € [1,width — w;] do

4: for y; € [1, height — h;] do

5: label = L(xy : x1 +wy, Y1 : y1 + hy);
6 if unique(label) == 2 then

7 W(label == 1) < —1;

8 W (label == l3) < 1,

9: append (x1,y1, (w;, hy), W) to T’
10: else if unique(label) == 3 then

11: for iCase € [1,3] do

12: W (label == licase) < 0;

13: W(label == l(iCase+1)%3) — —1;
14: W(label == l(;case+2)%s) < 1
15: append (z1,y1, (Wi, h;y), W) to T}
16: end for

17: end if

18: end for

19:  end for
20: end for
21: return T’

C. Multichannel Cell Descriptor

To integrate color and gradient information, we build a
multichannel descriptor for each cell. We refer to the settings
in detector [ChnFtrs], which are also commonly used in various
approaches known from the literature.

A total of 10 different channels are used following the sug-
gestions in [20]: three channels for LUV colors, one channel for
gradient magnitude information, and six channels for HOGs.
The authors of [20] also report that pre-smoothing with a
binomial filter [29] of radius 1, i.e., o ~ 0.87, improved the
performance, whereas post-smoothing on channel values had
little effect on performance.

Details as to how we choose the channels and on the impact
of pre-smoothing on image data and post-smooth on channel
values are discussed in Section V-C, in which performances un-
der different parameter settings are compared. Although some
parameters on channel features have been previously discussed
in publications on detector [ChnFtrs], we further contribute new
insights since our features consider local differences rather than
absolute values.

D. Feature Matrix

Assume we are given a template ¢ = (x,y, (w, h), W). We
normalize the weight matrix W inside each template by first
counting how often the weights +1 and —1 appear and denote
these counts as n,qq and ng,p. There are thus n,qq additive
cells and ng,}, subtractive cells, and we normalize each cell’s
weight by the total number of corresponding cells covered by a
rectangle. This results in an average weight matrix

W, = V) | sm(W) ©

Nadd Nsub

Each template goes through multiple channels to yield a
multichannel feature pool. Assume we have N; templates in
total and consider N, channels, a IN; x N, feature matrix is
generated as our final feature pool f The feature value of any
template ¢(t < N;) for any channel k(k < N.), e.g., color or
gradient information, can be then computed as a weighted sum

w

flt k) = DD oleti yt ik Wag(i) (D)

i=1 j=1

where o (i, j, k) denotes the sum of values in cell(, j) along
channel &, which can be computed very efficiently using inte-
gral images.

IV. SELECTING FEATURES FOR PEDESTRIAN DETECTION

Our detector employs the multimodal and multichannel
Haar-like features proposed in Section III. Note that these fea-
tures are built on channel features ([ChnFtrs [20]) but interpret
local differences between rectangular regions over multiple
channels rather than over channel values themselves.

We present our feature size in the following. Given 6 x
6 cells and templates size ranging from 1 x 2to 4 x 3 cells, we
obtain 266 templates at different positions. Shifting templates
along four directions with a step of one cell yields a template
pool of 1276 (some shifts are not possible at image borders);
considering 10 channels, the final feature size is 12 760. Con-
sidering this amount of features, we choose a fast version of
AdaBoost [30] for learning since it offers a convenient and fast
approach to select from a large number of candidate features.

As in any boosting algorithm, the final strong classifier is
built from a collection of weak classifiers. We use decision trees
of depth 2 as our weak classifiers and choose the number of
weak classifiers to be 2000. Similar to classic detectors [5],
[20], we also employ a multiround training strategy that has
been shown to lead to a better performance than a simple one-
round training procedure with the same number of negative
samples. For the first round, initial negative training samples
are randomly cropped from the negative example images; in
the following rounds, hard negative samples are searched using
the classifier built in the previous round, over all negative
example images. This procedure is iterated until no significant
performance gains are observed with further retraining. From
our experiments, three rounds of retraining were observed to
yield optimal performance; additional rounds did not show
significant improvements. An illustration of how performance
gains at each training round on the INRIA data set can be found
in Fig. 4. We collect 5000 negative samples at each round,
resulting in a large negative sample pool of 20 000.

In order to look into which features are more informative,
we plot a weight image of the top 100 features, with highest
weights from the final strong classifier, as shown in Fig. 5. To
generate this figure, we added the weight of each selected fea-
ture to the cells it covers and used different colors to indicate the
accumulative weight of each cell after boosting. As expected,
the head—shoulder area of the human body shows to be more
discriminative for pedestrian detection than other body parts.
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Fig. 5. Illustration of representative features. Different colors are used to

indicate the accumulative weight of each cell after boosting. Three black
bounding boxes indicate three body parts respectively. The head—shoulder area
shows to be more discriminative for pedestrian detection than other body parts.

The most discriminative features determined by the boosting
algorithm are then used for pedestrian detection in still images.
To this end, we slide a window over the whole image and
consider multiple scales. The spatial step size is set identical
to the cell size for speed, and the scale step is set to be 1.09
so that there are 8 scales in each octave. We use a simplified
nonmaximal suppression procedure [20] to suppress nearby
detections.

V. EXPERIMENTS

In this section, we describe the benchmark data sets and
evaluation protocol used in our experiments, discuss the impact
of parameter settings on performance, compare our optimal de-
tector to other state-of-the-art detectors, and provide an analysis
on runtimes.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE 1
STATISTICS OF THREE PEDESTRIAN DATA SETS USED FOR EXPERIMENTS

I | INRIA [5] | Caltech [32] | KITTI-Train [31]

imaging setup photo mobile mobile
. color images
Properties video se§s. \></ v \></
occlusion labels X 4 X
# pedestrians 1208 192k 1800
Training || # pos. images 614 67k 3471
# neg. images 1218 61k 3471
# pedestrians 566 155k 1962
Testing # pos. images 288 65k 3470
# neg. images 453 56k 3470

A. Benchmark Data Sets

Experiments are conducted on three well-established public
benchmark data sets (see Table I): the INRIA pedestrian data
set [5], the Caltech pedestrian data set [3], and the KITTI-
Train pedestrian data set [31]. Note that it is infeasible to run
experiments on data sets that only consist of grayscale images,
e.g., Daimler data set [4], because our approach uses three color
channels.

INRIA Pedestrian Data Set': This is arguably the most
popular data set for people detection and comes along with
predefined subsets for training and testing. For training, there
are 2416 positive samples, by mirroring from 1208 different
pedestrian images; there are 12 180 natural images, where no
pedestrian appears, and negative samples can be selected by
randomly cropping. For test, there are 288 positive samples and
453 negative samples. In consistency with conventions in this
area, the test is only implemented on the positive samples.

Caltech Pedestrian Data Set*: This is currently the largest
and most challenging data set for pedestrian detection, consist-
ing of approximately 10 h of 640 x 48030-Hz video taken
from a vehicle driving through regular traffic in an urban
environment. About 250000 frames with a total of 350000
bounding boxes and 2300 unique pedestrians were annotated.
The training data (set00—set05) consist of six training sets,
along with all annotation information (see [32] for details). The
testing data (set06—set10) consist of five sets.

KITTI-Train Pedestrian Data Set*: This data set is captured
by driving around the mid-size city of Karlsruhe, in rural areas
and on highways. It consists of 7481 images and 3762 pedes-
trian annotations. We split the data set evenly into two parts,
i.e., one for training and another for testing. The KITTI-Test
data set is not considered because its ground truth annotations
are not publicly available, resulting in that evaluations under
our experimental settings are not allowed.

B. Evaluation Protocol

In the following, we explain details of our evaluation protocol
in four aspects, which are consistent with the conventions in
this field.

Ground Truth Filtering: For each experiment, a subset of
all ground truth data is considered according to its specific

Uhttp://pascal.inrialpes.fr/data/human
Zhttp://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
3http://www.cvlibs.net/datasets/kitti/eval_object.php
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Fig. 6. Evaluation of different parameters on the INRIA pedestrian data set. (a) Cell sizes of the pedestrian shape model. (b) Channel combinations with
color channels + gradient magnitude channels (GM) + gradient histogram channels (GH). (c) Image normalization methods. Local intensity normalization is
done inside each detection window; global normalization is done for the whole input image. (d) Pre-smoothing of colors with binomial filters of different radii.
(e) Post-smoothing of channels with binomial filters of different radii. (f) Number of weak classifiers.

purpose. Outliers are marked with an ignore label, which means
they need not be matched; however, matches are not considered
as mistakes either. We specify four settings used in this paper.

1) Reasonable: Overall results in Fig. 7 are obtained under
this setting. Pedestrians at a resolution of over 50 pixels
in height and visibility of more than 65% are considered.

2) No occlusion: Pedestrians with 100% visibility are
considered.

3) Partial occlusion: Pedestrians with more than 65% visi-
bility are considered.

4) Heavy occlusion: Pedestrians with 20%—-65% visibility
are considered.

Detection Results Filtering: We filter out detection results
using an expanded filtering method [3]; hence, detection results
far outside the evaluation scale range should not be considered.
When evaluating a scale range of [S, S3], only detections in
[S1/€, S2€] are considered for evaluation. In our evaluation, we
set & = 1.25.

Bounding Box Matching Rules: Filtered ground truth bound-
ing boxes and detection results bounding boxes are annotated
by Bg and Bgs, respectively. A detected bounding box and
a ground truth bounding box match if and only if the ratio
of overlap to the union of their areas exceeds a given thresh-
old [3]

area(Bg¢) Narea(Bgt) !

tch(Bygg, Bet) = 0.5.
match(Bat, Bgt) area(Bg;) U area(Bgt) ~

®)

Performance Measurements: We perform full image eval-
uation instead of per-window evaluation as the former one
provides a natural measure of error of an overall detection sys-
tem. In order to compare different detectors, we plot miss rate
against false positives per image (FPPI) curves in logarithmic
scales by varying the threshold on the detection confidence
of the classifiers. We only plot the curves in FPPI between
(—00, 10°] as more than 10° FPPI is unacceptable for ADASs
applications. In addition to this miss rate versus FPPI curves,

we calculate a single numerical measurement to summarize
detector performance. We use the average miss rate [3], which
is computed by averaging the miss rate at nine FPPI rates
evenly sampled in log-space in the range of [10~2, 10°]. This
average miss rate generally gives a more stable and informative
assessment of the overall performance for different detectors
than the miss rate at only 10~! FPPI according to [3].

C. Parameter Settings

To optimize our detector, we analyze the influences of differ-
ent parameter settings. Next, we present various experimental
results on the INRIA data set.

Cell Size: The pedestrian body shape can be covered by
arrays of different cell sizes, as shown in Fig. 2. We present
experimental results for cell sizes of 4 x 4 pixels, 6 x 6 pixels,
and 8 x 8 pixels. In Fig. 6(a), we find that a cell size of 6 pixels
% 6 pixels produces the best results; hence, we choose it as our
default setting.

Channels: We plot the performance of various channel com-
binations. As gradient histograms have been shown as the
most informative channels in [20], we only try alternatives
for color and gradient magnitude channels. In Fig. 6(b), it
appears that LUV color channels are more discriminative than
HSV channels, both are commonly used in this area; using
three gradient magnitude channels (one for each color channel)
rather than one maximal magnitude channel results in approx-
imately 4% miss rate increase; using two gradient components
(along the z- and y-directions, respectively) also leads to slight
performance decrease. To specify, the optimal channel choice
is to use LUV three color channels, plus with one maxi-
mal gradient magnitude channel and six gradient histogram
channels.

Image Normalization: We analyze the influence of intensity
normalization on our features as previous works on rectangu-
lar features typically employ various ways of normalization.
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Viola and Jones [VJ] [14] used local normalization inside
each detection window; [Roerei] [24] reported performance
improvements by applying global normalization on the input
images. However, according to the results in Fig. 6(c), our
features obtain best results without image normalization.

Smoothing: While pre-smoothing input images with bino-
mial filters of radius 1 improves the performance by more
than 3%, larger radii produce worse results; post-smoothing of
channel features significantly decreases the performance and
seems to inhibit characteristic local variations.

Number of Weak Classifiers: Intuitively, one would expect
more weak classifiers to lead to better performance since deci-
sion boundaries become more accurate; on the other hand, too
large number of weak classifiers may lead to overfitting of the
training data. Accordingly, we find that detection performance
is improved by approximately 5% when using 2000 rather
than 1000 weak classifiers but performance starts to decrease
slightly when the number of weak classifiers exceeds 2000.

For the results reported next, we therefore consider the
following settings of our detector: cell size of 6 x 6; channels
of LUV+GM+-GH; image smoothing with binomial filters of
radius 1; no channel smoothing; no image normalization; and
2000 weak classifiers.

D. Comparisons With State-of-the-Art Detectors

In this section, we compare the performance our detec-
tor to other state-of-the-art detectors whose results are pub-
licly available,* using the experimental protocol explained in
Section V-B.

The results in Fig. 7(a) show that our detector outperforms
the baseline detector [ChnFtrs] by about 8% and reaches the
state-of-the-art performance. The two detectors with better
results than ours consider feature pools that are more than
50 times larger and are about 100 times slower in training.

“http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
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Overall results of different detectors on the INRIA and Caltech data sets under standard evaluation settings. (a) INRIA. (b) Caltech test.

On the Caltech pedestrian data set, our detector outperforms
not only the baseline detector [ChnFtrs] by about 20% but also
yields the overall best performance, as shown in Fig. 7(b).
In particular, we note that it even outperforms detectors that
consider additional motion information [8], [40]. We also show
several detection examples of our detector under different sce-
narios from the Caltech pedestrian data set in Fig. 11.

Fig. 8 shows evaluation results under different occlusion
conditions for the Caltech pedestrian test data. As in [3],
we use three occlusion levels: no occlusion (0% occluded),
partial occlusion (1%-35% occluded), and heavy occlusion
(35%—-80% occluded). The performance of all the detectors
significantly drops as occlusion increases. Yet, our detector
seems least affected by occlusion in the sense that it consis-
tently ranks high for all occlusion levels. In fact, it achieves
the best performance among all tested detectors for the cases
of no and heavy occlusion, and we conclude that the informed
design of our features yields robustness against occlusions.
Notably, our detector even outperforms those detectors that
employ explicit occlusion handling strategies, e.g., [DBN-Isol]
and [DBN-Mut], for all levels of occlusion.

The KITTI-Train data set is considered as a more difficult
data set, and experimental results are shown in Fig. 9. Unfor-
tunately, we are not able to make extensive comparisons as
on the INRIA and Caltech data set due to the lack of results
from other state-of-the-art detectors. Only compared with our
baseline detector [ChnFtrs], we notice that our approach obtains
a significant improvement of around 18% in terms of average
miss rate.

To provide a more comprehensive comparison among all the
state-of-the-art detectors w.r.t. detector components and perfor-
mance, we list detail information of each detector in Table II.
First, as most detectors use HOG features or channel features
in various forms, we group detectors into three categories:
HOG-based, channel-based, and others, according to which
kind of features they employ in major. Then we indicate which
classifiers they use and whether they apply part-based models,
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Fig. 8. Evaluation results under different occlusion conditions on the Caltech
pedestrian test data set. (a) No occlusion. (b) Partial occlusion (1%-35%
occluded). (¢) Heavy occlusion (35%-80% occluded).

occlusion handling strategy, or motion information in the third
to sixth column for all the detectors considered in this paper. In
the last two columns, corresponding performance on the INRIA

2
I
]
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Fig.9. Comparison to the baseline detector [ChnFtrs] on the KITTI-Train data
set under standard evaluation settings.

and Caltech pedestrian data sets are demonstrated, respectively.
We summarize our insights as follows.

1) HOG-based detectors are still in majority, whereas more
recent detectors tend to employ channel features, which
obtain better performance.

2) Most HOG-based detectors utilize SVMs as classifiers,
whereas channel-based ones all use AdaBoost. This is
because channel features are usually of higher dimen-
sions, and AdaBoost is more efficient to select the most
discriminative ones.

3) Itis interesting that all the channel-based detectors do not
employ part-based models or occlusion handling strategy;
in contrast, more efforts have been explored for HOG-
based detectors. Reasonable performance achieved by
simple utilization of channel features implies that more
promising results can be expected through integration
with more complex models.

4) Over all the detectors, motion information is rarely used.
One reason may be that it is computationally expensive
to obtain accurate and dense optical flow maps, which
directly describe the motion between successive frames.
On the other hand, it is still an open problem about how
to design motion-based features, which provide rather
different information from colors or gradients.

E. Runtimes

We do not provide an exhaustive comparison of runtimes
among state-of-the-art detectors in this paper because different
detectors are implemented on different machines, some even
heavily rely on GPU computations [22], [24]. It therefore does
not make much sense to list runtimes from different computing
architectures.

Our detector is implemented in MATLAB on an Intel Core-i7
CPU (3.5 GHz). On the Caltech data set, it takes 1 h for training
with four rounds and 1.6 s ([ChnFtrs] 2 s) for testing a 640 x
480 image using the optimal parameters, as illustrated in
Section V-C. In addition to channel computation, our feature
computation includes local sums and differences, both of which
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TABLE 1I

COMPREHENSIVE COMPARISONS FOR STATE-OF-THE-ART PEDESTRIAN DETECTORS. EACH ROW IN THIS TABLE SUMMARIZES INFORMATION AS TO
CLASSIFIERS, PART-BASED MODELS, OCCLUSION HANDLING, AND MOTION INFORMATION USED IN A PARTICULAR APPROACH, AND DISPLAYS THE
CORRESPONDING AVERAGE PERFORMANCE IN TERMS OF AVERAGE MISS RATES ON BOTH DATA SETS. THE APPROACH PROPOSED IN THIS PAPER
YIELDS STATE-OF-THE-ART PERFORMANCE ON THE INRIA DATA SET AND CONSISTENTLY BETTER RESULTS THAN PREVIOUSLY REPORTED ON
THE CALTECH DATA SET. WE ANNOTATE THE TOP THREE DETECTORS FOR EACH DATA SET WITH A * FOLLOWING EACH AVERAGE MISS RATE

Category|| Detector Classifier Part-based  Occlusion Motion Average miss rate
handling INRIA Caltech
HOG [5] linear SVM X X X 45.98% 68.46%
MultiFtr [33] AdaBoost X X % 36.50% 68.62%
MultiFtr+CSS [8] AdaBoost X X X 24.74% 60.89%
MultiFtr+Motion [8] linear SVM X X 4 / 50.88%
HikSvm [9] HIK SVM X X X 42.82% 73.39%
HogLbp [17] linear SVM X Vv X 39.10% 67.77%
HOG- LatSvm-V1 [12] latent SVM 4 X b 43.83% 79.78%
based LatSvm-V2 [13] latent SVM Vv X 3% 19.96% 63.26%
FeatSynth [34] linear SVM Vv X X 30.88% 60.16%
MultiResC [35] latent SVM X X % / 48.45%
AFS+Geo [30] linear SVM v X X / 66.76%
MT-DPM+Context [37] | latent SVM 4 X X / 37.64%%
DBN-Isol [38] DeepNet V4 Vv % f 53.14%
DBN-Mut [39] DeepNet v Vv X / 48.22%
ChnFtrs [20] AdaBoost X X % 22.18% 56.34%
CrossTalk [23] AdaBoost X X X 18.98% 53.88%
Channel-|| VeryFast [22] AdaBoost X X X 15.96% /
based SketchTokens [25] AdaBoost X X X 13.32%% /
Roerei [24] AdaBoost X X % 13.53%% 48.35%
ACF+SDt [40] AdaBoost X X 4 / 37.34%%
ours AdaBoost X X X 14.43%%  34.60%%
Others V] [14] AdaBoost X X X 72.48% 94.73%
Shapelet [41] AdaBoost X X X 81.70% 91.37%

can be parallelized for further speedup. Our detector is expected
to reach real-time efficiency running on a powerful machine and
with GPU computation enabled.

VI. DISCUSSIONS

In this section, we discuss several important issues regarding
our feature pool and performance.

Compactness of Features: We aim to design compact fea-
tures; hence, we do not gather all random features but carefully
design a relatively small feature pool based on a statistical
shape model. Compared with recent state-of-the-art detectors,
e.g., [Roerei] [24] and [SketchTokens] [25], our feature pool
(12760 dimensional) is more than 50 times smaller. We obtain
competitive results on the INRIA data set and consistently
better results on the Caltech data set with a much smaller feature
pool, thus the compactness of our features.

Generality Versus Specificity: As the pedestrian body shape
shown in Fig. 2 looks like from the front or back views, readers
may argue that how our features adapt to crossing pedestrians,
which are an important concern for safety and show quite dif-
ferent shapes from the average pedestrian body shape in Fig. 2.
In fact, our features are largely invariant against viewpoints
or postures. We provide two evidences from our experiments.
The first one is that, regardless of viewpoints, the most infor-
mative features selected by our classifier are always found in
the head—shoulder area (see Fig. 5), where minimal variance
exists w.r.t. viewpoints; moreover, our detector achieves stable
performance under different occlusion levels (see Fig. 8). From
our observation, occlusions happen more at lower body (see
Fig. 10), yet relatively rare in the head—shoulder area. Our
stable performance approves that features from the lower body

Fig. 10. Three examples of occlusions happen at lower body. Example images
are from the Caltech pedestrian data set, and red dashed bounding boxes indi-
cate the occluded part for pedestrians. In the given examples, lower body parts
are occluded by a dustbin, a moving car, and another pedestrian, respectively.
are automatically ranked as less informative so that different
limb postures do not have a negative effect.

First- Versus Second-Order Channel Features: Readers may
expect better performance while including the first-order fea-
tures to the final feature pool, as they describe the uniform
texture inside each body part. However, these features were
excluded because we found them to slightly decrease the perfor-
mance and we assume them to be redundant. As an ensemble,
our templates cover the whole body after shifting and charac-
teristics such as uniform texture on clothing can be represented
as minimal differences on those templates only cover one
body part.

VII. CONCLUSION

Pedestrians are very vulnerable in urban traffic environments;
hence, pedestrian protection based on visual sensing forms
a prominent component of ADASs. The key problem of a
pedestrian protection system is apparently to detect pedestrians
when they are still in a safe distance to ensure enough time for
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Fig. 11.

®

Detection examples of our detector under different scenarios from the Caltech pedestrian data set. Green solid bounding boxes, yellow dotted bounding

boxes, and red dotted bounding boxes indicate true positive, false positive, and false negative (missed) results, respectively. (a) Small-scale pedestrians walking
along the street. (b) One missed pedestrian due to heavy occlusion (> 70%). (c) Complex scenario at one intersection with one false positive occurring at one tree.
(d) Pedestrians with occlusions. (e) Multiple pedestrians walking across the street. (f) One motorcyclist falsely detected as a pedestrian. (g) One pedestrian of low
contrast. (h) Pedestrians with pets. (i) One traffic sign falsely detected as a pedestrian.

the driver or the vehicle to act for collision avoidance. Vision-
based pedestrian detection is an effective and efficient way to
detect pedestrians from on-board video data.

In this paper, the particular approach we have presented
was motivated by the observation that a current trend in work
on pedestrian detection consists in analyzing feature vectors
of ever-increasing dimensions, which necessitate the use of
powerful hardware in order to guarantee real-time capability.

In addition, because of the peculiar geometry of high-
dimensional spaces (concentration of measure and neighbor-
liness), it is not necessarily guaranteed that additional efforts
spent on computing high dimensions pay off in terms of recog-
nition accuracy. We therefore explored more compact features
that could yield state-of-the-art performance in pedestrian de-
tection if they were designed based on prior information as to
the appearance of the upright human body.

Given a large data set of pedestrian images, we computed a
statistical shape model, which proved to consist of four clearly
recognizable logical components. We covered this shape model

with grids of cells and slid rectangular windows over these cell
arrays to produce a set of location specific weighted binary or
ternary Haar-like templates that incorporate information as to
which of the four components of the shape are covered by a
rectangle.

The weighting scheme provided us with a simple mechanism
of generating multimodal and multichannel Haar-like features,
and we applied boosting to determine the most informative
ones. As our approach does not require computing any possible
configuration of rectangles within a sliding window nor is
based on random sampling of rectangle features, it marks a
middle ground among recently published similar approaches.
Moreover, our detector is inherently simple to implement, easy
to train, and fast during runtime.

In extensive experiments with standard benchmark data sets,
we found our detector to achieve state-of-the-art performance
on the INRIA pedestrian data set; for the Caltech pedestrian
data set, we found it to outperform all other recent approaches
considered in our tests (see Fig. 11 for several challenging
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detection examples); for the more challenging KITTI data set,
our detector also obtains a significant improvement compared
with the baseline detector. In addition, our model-based rectan-
gular features proved to be highly robust under occlusion and
even outperformed methods that contain explicit mechanisms
for occlusion handling.

Given these results, it appears promising to further explore
model driven design of efficient rectangular features. Immedi-
ate extensions of the approach presented in this paper could be
to incorporate additional channels such as motion information.
In addition, we see more challenging extensions, e.g., to define
multiple shape models w.r.t. parts or viewpoints for partic-
ular object classes, thus enabling more shape-variant object
detection.
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